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This article studies a sequential search model in which consumers can purchase a product 
without incurring a search cost to inspect the match value, which we call “blind buying”. 
We show that the optimal search policy is no longer as per Weitzman (1979). When the 
match value has a symmetric distribution, both consumers and firms are indifferent to 
the search order, conditional on that blind buying does not take place in the first stage. 
Blind buying always increases total welfare, and increases market prices and industrial 
profits if and only if the first-sample search cost is below a threshold value. An increase 
in the search cost reduces equilibrium prices. Such a result is consistent with existing 
price-directed search models, but the underlying mechanisms are different. We also show 
that being prominent can adversely affect a firm if the match value is asymmetrically 
distributed, which contrasts the literature.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

While shopping, consumers do not typically have all relevant information and must invest effort in order to purchase a 
suitable product at a reasonable price. Therefore, economists have developed sequential consumer search models to study 
such situations. In traditional search models, such as Wolinsky’s (1986) and Anderson and Renault’s (1999), the typical 
assumption is that consumers pay a fixed search cost to visit a store and then become fully informed about the price and 
match value at that store. Particularly, consumers cannot buy a product unless they pay the search cost. Such an assumption 
is reasonable for offline shopping, in which the fixed search cost can be expressed as the transportation cost of visiting a 
store. Once consumers arrive the store, the price and match value of a product are relatively easy to observe, because they 
can touch, feel, and try the product. It is therefore reasonable to assume that, after arriving at the store, the cost of learning 
the price and match value is zero. In such scenarios, it is natural to assume that consumers cannot buy a product if they 
have not visited a store.

However, online shopping brings new features that traditional search models cannot capture. On one hand, the highly 
developed online search technologies have significantly lowered the cost of visiting stores and collecting information about 
prices. For online shopping, the costs of visiting a store and observing prices are almost negligible. On the other hand, 
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consumers cannot physically inspect and try products and thus have to exert a costly effort by, for example, reviewing 
product descriptions, images, and other consumers’ feedback, to evaluate the match value of a product. Therefore, search 
cost should be interpreted as the cost required to accurately learn a product’s match value, rather than the transportation 
cost of visiting a store. The literature has already taken notice of this fact. For instance, Choi et al. (2018) developed a search 
model in which consumers can observe prices at no cost, but incur a search cost to fully observe the match value. Although 
they interpret the search cost as the cost of learning the match value, they maintain the assumption that consumers cannot 
buy a product unless they pay the search cost. Under this interpretation of search costs, it is theoretically more reasonable 
to assume consumers have the option to buy the product without making an effort to learn the match value.

This article thus develops a sequential search model to capture these new features. The basic model is a duopoly version 
of Choi et al.’s (2018) model, except that we allow consumers to buy a product without inspecting the match value. For 
tractability, we also assume the distribution of the match value to be symmetric. Before searching, all consumers observe 
the prices and prior values of both firms, but have to pay a search cost to learn the match value. Consumers have to 
decide which product to search firstly and whether to continue searching after inspecting the first product. If consumers 
decide to stop searching, they can either buy the inspected product or blindly buy an uninspected product, the latter option 
being new to the literature. We analyze how this blind buying option affects consumers’ searching behavior, firms’ pricing 
strategies, and their incentives to become prominent.

Before conducting the equilibrium analysis, we present the following online-and-offline example that fits our setup of 
the blind buying. With the deep integration of the online and offline channels, an increasing number of firms adopt the 
multi-channel (brick-and-click) approach. Examples include well-known cases such as Walmart, Macy’s, Staples. Consumers 
can either shop online, without visiting a firm’s physical store, or make a purchase decision after visiting the firm’s physical 
store. Visiting the physical store is costly, but allows consumers to learn detailed information about a product’s match value. 
Buying directly online can help consumers save the costs of visiting the physical store, but they can only obtain inaccurate 
information about the match value. In this example, the blind buying is shopping directly online, while the informed buy 
means buying the product after visiting the physical store.

We assume that the search cost is c1 for the first sample and c2 for the second one. Our setup incorporates the standard 
case where c1 = c2 = c, as well as the assumption that the first sample is free, i.e., c1 = 0. In reality, a consumer’s search 
costs for different samples need not be the same. For example, a consumer’s patience may be wearing thin as she samples 
more products, so the search cost per sample may increase during the search. Another example is “learning by doing”: a 
consumer may gain more experience in searching, so the search cost per sample may decrease during the search.

Without the blind buying option, consumers’ optimal searching strategy is fully described by Weitzman’s (1979) model, 
which consists of a search order and a stopping rule. Since we assume that the distributions of the two products’ match 
values are identical, a consumer first searches the product with a higher net prior value (equal to the prior value minus 
the price). The consumer buys the product if the match value of the first search exceeds a threshold value, or continues to 
search if the match value is below the threshold value.

Allowing for blind buying significantly changes consumers’ searching behavior. Weitzman’s (1979) optimal policy is no 
longer applicable. In the first stage, due to the first-sample search cost, a consumer will blindly buy a product without enter-
ing the search process when the difference of the products’ prior values is large. Sampling takes place only when the prior 
value difference is small. Conditional on searching in the first stage, the optimal stopping rule in the second stage consists of 
two threshold values: upper and lower reservation values. If the observed match value exceeds the upper reservation value, 
the consumer stops searching and buys the inspected product. If the match value is below the lower reservation value, the 
consumer stops the search and blindly buys the uninspected product. Therefore, while the upper reservation value ends 
the search process by approving a product that is good enough (as in existing search models), the lower reservation value, 
introduced by blind buying, can also stop consumers from searching by eliminating an unsatisfactory product. The consumer 
continues to search only if the observed match value is between the two reservation values.

With the option of blind buying, the optimal search order of a consumer no longer corresponds to Weitzman’s (1979). 
We show that the consumer is indifferent among search orders, conditional on that blind buying does not take place in the first 
stage. The intuition is as follows. Since searching is costly, the consumer wants to end the search process as early as possible. 
Without a blind buying option, the search ends only when a product is discovered to be good enough. Therefore, the most 
efficient way is to first search the product with the highest net prior value, because this product is most likely to exceed the 
upper reservation utility and get approved. In contrast, with the blind buying option, the search can be terminated either 
by a product approval, when the inspected match value is above the upper reservation value, or by a product elimination, 
when the inspected match value is below the lower reservation value. The consumer may want to first sample the product 
with a lower net prior value because it is more likely to be eliminated. Since the match value is distributed symmetrically, 
the effect of product elimination offsets the effect of product approval, leaving consumers indifferent to the search order.

We also show that firms’ profits are independent of consumers’ search order. As a result, ranking first in the search order 
is irrelevant for a firm. Being sampled first poses both a benefit and a risk for firms. The benefit is that it will be selected 
without further search when the match value exceeds the upper reservation value; and the risk is that it will be eliminated 
from consumers’ choice set without further search when the match value is below the lower reservation value. Because the 
match value is symmetrically distributed, the benefit and risk offset each other, so that firms are indifferent to the search 
order.
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The effect of blind buying on equilibrium prices can be either positive or negative. On the one hand, conditional on 
searching in the first stage, firms’ profits are independent of consumers’ search order. Thus, a firm has less incentive to 
lower its price in order to attract first visits. Consequently, blind buying has positive effect on equilibrium prices. On the 
other hand, the option of blind buying allows consumers to make uninformed purchasing decisions, i.e., purchase without 
inspecting any products. That consumers possess less information about their tastes reduces products’ heterogeneity and 
increases price competition. Thus, blind buying has negative effect on equilibrium prices. The former effect dominates and 
blind buying increases equilibrium prices if and only if the first-sample search cost is small.

We show that, with blind buying, an increase in the first-sample search cost reduces equilibrium prices, while it has no 
effect on market prices when blind buying is not allowed. The effect of the second-sample search cost on market prices 
is the same as in existing price-directed search models, but the underlying mechanisms are different. In existing price-
directed search models, a price cut can attract more consumers to visit a firm first, and these first visits are more likely to 
lead to final sales as search costs increase. As a result, firms’ incentives to lower their prices increase with the search costs. 
This mechanism does not exist in our blind buying model. First, a price reduction does not attract more first samplings, as 
consumers are indifferent to the search order. Second, even if a firm successfully attracts more consumers for first samplings, 
its profit does not increase, as profits are independent of consumers’ search order. Instead, the blind buying option creates 
a new effect on price competition, the so-called blind-buying effect. In each stage of the search process, a blind buying 
takes place whenever a product is unsatisfactory compared to its competitor and is therefore eliminated. Thus, firms have 
incentives to lower their prices in order to attract more blind buying, making the market more competitive.

Our welfare analysis shows that, blind buying always increases total welfare. Blind buying offers consumers an additional 
way to end the search process, which saves total search costs and thus increases the overall social welfare. If the first-sample 
search cost is high, blind buying also reduces the equilibrium prices and thus increases consumer surplus. However, if the 
first-sample search cost is low, blind buying lowers consumer search costs on one hand and leads to higher equilibrium 
prices on the other, leaving an ambiguous effect on consumer surplus.

We then investigate the case in which the match value is distributed asymmetrically. To ensure tractability, we assume 
the distribution of the match value is binary, that is, either high or low. We first examine the case in which the search 
order is exogenous and independent of the product prices. Such an assumption is reasonable if we assume that the cost of 
visiting one firm is sufficiently lower than that of visiting the other, which is the case when one firm opens its offline store 
in a convenient location while the other opens its offline store in an unfavorable location in our aforementioned online-
and-offline example. Surprisingly, we show that being prominent can be harmful to a firm, which is in sharp contrast to the 
literature. Intuitively, if the match value is likely low, the product in the non-prominent position will most likely be blindly 
purchased by consumers, resulting in higher profits for the producing firm. In such cases, a firm may want to pay to avoid 
being prominent. Empirically, most of the evidence supports it is beneficial to appear earlier in the search list (Ellison and 
Ellison, 2009; Baye et al., 2009; Brynjolfsson et al., 2010, and the citations therein), but there is also evidence that it can be 
beneficial to appear later (Novarese and Wilson, 2013; De los Santos and Koulayev, 2013; Feenberg et al., 2017). Our model 
provides a possible explanation for the mixed evidence of position effects. We then investigate the case where consumers 
can endogenously select the search order. We show that consumers may search the product with a lower net prior value 
first, so an increase in price can attract more first samplings. In this case, however, firms will be harmed if they are sampled 
first. Consequently, firms have incentives to lower their prices so as not to be sampled first.

Our work belongs to the consumer search literature on non-random sequential searches. The first-generation models 
examine a setup where the search order is exogenously fixed. For instance, Arbatskaya (2007) studies a market of homo-
geneous goods in which consumers search for better prices. Subsequent articles take horizontal product differentiation into 
account, so that consumers search for both price and product fitness. Armstrong et al. (2009) and Armstrong and Zhou 
(2011) examine the possibility that one firm is prominent, meaning all consumers search this firm first and then randomly 
search the remaining firms. Zhou (2011) studies the case in which there is a complete exogenous search order, finding that 
higher ranking leads to higher profits in general, and firms prefer to be visited first. The only exception is Fishman and 
Lubensky (2018a), who introduce costly returns into a search model and show that appearing later in the search could be 
preferable. The reason is that costly returns benefit a later searched seller by preventing returns conditional on the search. 
Our model offers another rationale why prominence is not necessarily beneficial.

The second-generation models endogenize the search order. The work-horse model is Weitzman’s (1979), in which an 
agent named Pandora is presented with boxes containing prizes and can open the boxes in any order, discover the prizes 
within, and optimally stop. The optimal policy, so-called Pandora’s rule, specifies a stopping rule and a remarkably sim-
ple search order. Following Weitzman (1979), several articles have recently investigated price-directed consumer searches. 
Motivated by the fact that price information is easy to obtain online, these papers assume all prices are observable before 
the search and consumers endogenously select their search order according to prices and pre-search information (see, e.g., 
Armstrong and Zhou, 2011; Armstrong, 2017; Haan et al., 2018; Choi et al., 2018; Ding and Zhang, 2018). In contrast to 
traditional random search models, these models find that an increase in search costs leads to a decrease in equilibrium 
prices. Intuitively, consumers always visit the firm with the lowest price and tend to buy from the first one with increasing 
search costs. As a result, firms are in fierce competition to be visited first and thus lower their prices. The main difference 
between our article and the literature is that we allow consumers to buy blindly. We show that the equilibrium in our 
model differs substantially from that in existing price-directed search models.
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Our article also contributes to the literature in search models in which searchers can endogenously decide whether to 
be informed before decide on an object. Doval’s (2018) is the first study that extends Weitzman (1979)’s model by allowing 
searchers to take a box without inspecting it and provides sufficient conditions to characterize the optimal policy. Other 
papers investigate the situation that an agent has to choose an object with multi attributes and can discover the quality 
of each attribute at a cost. The problem is how many attributes to investigate and whether to take the object based on 
partial information (Branco et al., 2012; Klabjan et al., 2014; Olszewski and Wolinsky, 2013; Ke et al., 2016; Ke and Villas-
Boas, 2018). However, these articles focus mainly on searchers’ behaviors and do not consider firms’ strategic behaviors.1 By 
contrast, we are also interested in firms’ strategic pricing decisions and their incentives to become prominent. There are two 
studies that incorporate firms’ pricing decisions. First, Fishman and Lubensky (2018b) construct a model in which consumers 
first pay a transportation cost to discover a seller’s price and then have the option to pay a search cost to learn the product’s 
match value before deciding to buy or continue searching. Second, Chen et al. (2018) allow consumers to choose the depth 
of evaluation before buying a product. A common and interesting result of these two articles is that equilibrium prices and 
consumer surplus are both non-monotonic in the search cost. The topic of our article is quite similar to theirs, with the 
difference that while these two articles consider a random search, we examine the case of a directed search. As a result, we 
are also able to discuss the search order, which is not possible within their framework.

The rest of the paper is organized as follows. We introduce the formal model in Section 2, analyzing consumers’ optimal 
search strategy and characterizing market equilibrium. In Section 3, we first study how the presence of a blind buying 
option affects the relationship between market prices and search costs. Then, we investigate the effect of the blind buying 
assumption on welfare levels. In Section 4, we study the effect of prominence when a blind buying option is available, and 
show that prominence could be harmful to a firm. Section 5 concludes the paper. All proofs are given in the appendix.

2. The model

Consider a duopoly market, in which two firms sell horizontally differentiated products in price competition. Production 
costs are normalized to zero. The demand side of the market consists of a unit mass of consumers, each of whom is risk-
neutral and wants to buy one unit of the products.2 Firms announce prices simultaneously. Consumers costlessly observe 
products’ prices and search optimally for the best product. The search is assumed to be sequential and with perfect recall.

Following Choi et al. (2018) and Haan et al. (2018), the random utility (net of any search cost) of consumer l, who 
purchases the product from firm i = 1, 2, is given by:

ũil = η̃il + ε̃il − pi,

where pi is product i’s price; random variable η̃il represents the observable match value of product i to consumer l, which 
can be interpreted as the pre-search information of the product value that can be costlessly observed by consumers; and 
random variable ε̃il represents the opaque match value between product i and consumer l, which is unobservable but can 
be discovered at some search cost. To distinguish the two types of match values, we simply call η̃il the “prior value” and ε̃il
the “match value” throughout this paper.

Let ηil and εil denote the realized values of random variables η̃il and ε̃il , respectively. We assume that η̃il and ε̃il are 
independently and identically distributed across consumers (l’s) and products (i’s), according to distribution functions G and 
F , respectively. Additionally, η̃il and ε̃il are independent of each other.

As previously mentioned, the key feature of our model is that we allow consumers to blindly buy a product. That is, at 
any stage of the search process, consumers have the option of purchasing a product without inspecting its match value ε̃il , 
in which case no search cost is incurred. If consumer l blindly buys product i, that is, the consumer learns (ηil, pi) but not 
εil , the expected utility (net of search costs) for consumer l is

Eũil = ηil + E [ε̃il] − pi .

Search is assumed to be costly. We assume that the search cost is c1 for the first sample and c2 for the second one. 
Our setup is general and includes the standard case where c1 = c2 = c, as well as the case where the first sample is free, 
i.e., c1 = 0. As we will show later, with the option of “blind buying”, the first-sample search cost c1 and the second-sample 
search cost c2 have different effects on the players’ strategies as well as the market outcomes.

Allowing blind buying complicates the consumer search behavior. On one hand, consumers have to decide at every stage 
of the search process whether they want to buy a product blindly. On the other hand, the optimal search order becomes 
more subtle when consumers expect a blind buying to take place in the future. The analysis of our model is somewhat 
more difficult, since the optimal search strategy of each consumer, as we show later, is no longer completely characterized 
by Weitzman’s (1979) solution.

We assume that the distribution function of η̃il , G , has a continuously differentiable density function, g = G ′ , with infinite 
support. We also assume that the density function g is log-concave.

1 Branco et al. (2012) and Ke et al. (2016) include firms’ price decision in their models, but only consider monopoly pricing.
2 For technical convenience, we assume each consumer’s outside option is −∞ so that she always ends up purchasing one unit of the product.
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In the main model, we assume that the match value ε̃il is distributed symmetrically and continuously with infinite 
support3 and density function f = F ′ is continuously differentiable and log-concave. Log-concavity of f and g is commonly 
assumed in the consumer search literature. This assumption not only guarantees the existence and uniqueness of a market 
equilibrium, but also generates clear-up comparative statics results.

In Section 4, we relax the assumption that ε̃il is symmetrically distributed. In general, the optimal search policy is 
difficult to characterize when ε̃il is not symmetric. For traceability, we focus on the case where ε̃il has a binary distribution 
(which need not be symmetric). We solve the market equilibrium and investigate whether prominence is always beneficial 
for firms.

The game proceeds as follows. In stage 0, firms simultaneously announce prices (p1, p2). In stage 1, each consumer 
costlessly observes both the prices and the prior values of the products (p1, p2, η1, η2),4 and decides whether to blindly 
buy a product. The game ends if a blind buying takes place, or moves to stage 2 if the consumer chooses to discover a 
product’s match value. In stage 2, after learning product i’s match value ε̃i , i ∈ {1, 2}, the consumer decides among three 
options: (i) buy product i with no uncertainty; (ii) blindly buy product j without inspecting ε̃ j , where j ∈ {1, 2}\{i}; and 
(iii) discover the match value ε j and purchase the product with a higher realized utility. We first study the optimal search 
strategy of the consumer and then solve the pricing game between the two firms.

2.1. Optimal consumer search behavior

We first consider consumers’ search behaviors. Suppose a representative consumer has already observed the product 
prices and prior values (p1, p2, η1, η2). We define vi ≡ ηi − pi as product i’s net prior value and �i ≡ vi − v j as the 
difference between the net prior values of products i and j, for i = 1, 2. Note that �i = −� j for i �= j.

The consumer will obtain a payoff u0 = max {v1, v2} + E ε̃ if buying blindly in stage 1. Alternatively, the consumer can 
choose to discover a product’s match value and proceed to stage 2. Let ui (v1, v2) be the consumer’s expected continuation 
payoff (net of search costs) in stage 2, given that she previously inspected product i in stage 1, for i = 1, 2. Thus, the 
maximization problem at stage 1 becomes:

max{u0, u1(v1, v2) − c1, u2 (v1, v2) − c1}, (1)

where c1 is the first-sample search cost.
Now we use backward induction to solve ui (v1, v2). Assume that the consumer observes (p1, p2, η1, η2, εi) at the be-

ginning of stage 2. The payoff is vi + εi if she purchases product i immediately, v j + E ε̃ if buys product j blindly and 
−c2 + E ε̃ j

max(vi + εi, v j + ε̃ j) if continues to inspect ε̃ j and purchases the best product, where c2 is the second-sample 
search cost. Therefore, based on the information (p1, p2, η1, η2, εi), the consumer’s maximized payoff in stage 2 is

ui (v1, v2, εi) = max{vi + εi, v j + E ε̃,−c2 + E ε̃ j
max(vi + εi, v j + ε̃ j)}

= v j + max{�i + εi, E ε̃,−c2 + E ε̃ j
max(�i + εi1, ε̃ j)}. (2)

The expected continuation payoffs are thus given as follows:

ui(v1, v2) = E ε̃i
ui

(
v1, v2, ε̃i

)
, for i = 1,2. (3)

Since match value ε̃i is symmetrically and continuously distributed, i = 1, 2, we have:

E ε̃ = 0, F (−t) = 1 − F (t) and f (t) = f (−t), ∀t. (4)

We define

H(x) ≡ −c2 + E ε̃ max(x, ε̃) = −c2 + x +
∞∫

x

(t − x)dF (t),

which is the expected continuation payoff of a consumer that chooses to inspect the next product instead of choosing 
current option x. Using condition (4) and the definition of H(·), we can rewrite expression (2) as

ui (v1, v2, εi) = v j + max{�i + εi,0, H (�i + εi)} (5)

Note that H ′(x) = F (x) ∈ (0, 1), for any x ∈ (−∞, ∞). This implies (i) the consumer’s incremental utility between in-
specting the next product and purchasing the sampled product, H(x) − x, decreases with current option x; and (ii) the 
incremental utility between inspecting and blindly buying the next product, H(x), increases with x.

3 While the assumption that f and g have infinite support simplifies our analysis, our main results do not depend on this assumption.
4 We suppress any consumer-specific subscripts whenever there is no confusion.
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Let ε̂h and ε̂l be the unique solution to the following two equations, respectively:

H
(
ε̂h

) = ε̂h , i.e., c2 =
∞∫

ε̂h

(t − ε̂h)dF (t) (6)

H
(
ε̂l

) = 0, i.e., c2 = ε̂l +
∞∫

ε̂l

(t − ε̂l)dF (t) (7)

Therefore, ε̂h is the traditional reservation utility that makes the consumer indifferent between continuing sampling and 
purchasing immediately. The option of blind buying introduces a new reservation utility, ε̂l , at which the consumer is 
indifferent between continuing sampling and blindly buying the uninspected product. The symmetry of F implies that 
ε̂l = −ε̂h .5

To ensure that the search ever takes place in both stages, we assume that the search costs c1 and c2 are not too high.6

Assumption 1. The search costs satisfy 0 < c1, c2 <
∫ ∞

0 tdF (t).

Under Assumption 1, the two cutoff values ε̂h and ε̂l satisfy that ε̂l < 0 < ε̂h . We call ε̂h and ε̂l the upper and lower 
reservation utilities, respectively. The optimal search behavior in stage 2 is given by the following proposition.

Proposition 1. Assume that the match value is symmetrically and continuously distributed and Assumption 1 holds. If the consumer 
previously sampled product i and observed εi in stage 1, the optimal search strategy in stage 2 is to

(a) buy product i if �i + εi ≥ ε̂h;
(b) blindly buy product j if �i + εi < −ε̂h;
(c) continue to discover ε̃ j if −ε̂h ≤ �i + εi < ε̂h.

The consumer will stop searching and make a purchase when the current option is either above ε̂h or below ε̂l . In 
the former case, the consumer will purchase the current sampled product, considering it good enough. In the latter case, 
the consumer simply eliminates the sampled product and opts for the other product without sampling. Therefore, while 
the upper reservation utility ε̂h ends the search process by approving a product (as in existing search models), the lower 
reservation utility ε̂l introduced by blind buying can also stop consumers from searching by product elimination.7 When the 
difference of the products is small (i.e., −ε̂h ≤ �i + εi < ε̂h), the sampled product cannot easily be approved or eliminated, 
so that the consumer must continue sampling in order for a purchase decision.

Given the optimal search behavior in stage 2, we can solve expected continuation payoffs ui (v1, v2) by substituting (5)
into (3):

ui (v1, v2) =
−ε̂h−�i∫
−∞

v jdF (εi) +
ε̂h−�i∫

−ε̂h−�i

[H(�i + εi) + v j]dF (εi) +
∞∫

ε̂h−�i

(vi + εi)dF (εi),

where the first term of the right-hand side is the utility from blindly buying product j, the second term is the utility from 
continuing sampling product j, and the third term is the utility from buying product i immediately.

5 The symmetry of F implies that for any x, F (x) = 1 − F (−x) and ∫ x
−x tdF (t) = 0. Thus

∞∫
x

(t − x)dF (t) =
∞∫

x

tdF (t) − x [1 − F (x)]

=
∞∫

−x

tdF (t) − x + x [1 − F (−x)]

= −x +
∞∫

−x

(t + x)dF (t) ,

which, according to equations (6) and (7), implies that ε̂l = −ε̂h .
6 If the second-sample search cost is too high, that is, c2 >

∫ ∞
0 tdF (t), then it must be that ε̂h < 0 < ε̂l . In this case, if the current option x is positive, 

the consumer will obtain x immediately; if x is negative, the consumer will blind buy the next product. Thus, searches never take place in stage 2. One can 
also see from the proof of Proposition 2 that, c1 <

∫ ∞
0 tdF (t) ensures that the search ever takes place in stage 1.

7 In a duopoly setting, eliminating one product means the consumer will ultimately purchase the rival product. In other words, an elimination suffices to 
result in a purchase decision and ends the search process. However, for more than two firms, the search problem becomes significantly complex since the 
optimal search order is history dependent in general (see Doval, 2018). Hence, we restrict our analysis to the duopoly setting for a tractable solution.
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Lemma 1. If the match value is symmetrically distributed, then u1 (v1, v2) = u2(v1, v2) for any (v1, v2).

The above lemma yields an interesting result: with the blind buying option, conditional on that she decides to sample a 
product in stage 1, the consumer does not care about the order in which the match values are inspected, even if the net 
prior values of the products are different, that is, v1 �= v2. This is in sharp contrast to the Pandora’s rule of Weitzman (1979), 
according to which the product with a higher net prior value should always be sampled first.

The reason for Pandora’s rule is that the search process without blind buying ends only when a product gets approved. 
Therefore, it is most efficient to sample the product with the highest net prior value first, as this product is most likely to 
exceed the upper reservation utility and be approved. However, with a blind buying option, another reason for the consumer 
to terminate the search process and make a purchase is product elimination. The consumer may want to sample the product 
with a lower net prior value first because it is more likely to be eliminated, in which case the consumer can stop searching 
and blindly buy the uninspected product. Lemma 1 states that if the match value is symmetrically distributed, the effect of 
product elimination offsets the effect of product approval, leaving consumers indifferent to the search order.

The intuition of Lemma 1 is as follows.8 In a duopoly market with no outside option, consumers’ eventual purchase 
decision only depends on the difference between the payoffs generated by the two products (but not the level of the 
payoffs). In other words, in determining the optimal search order, what matters to the consumer is the difference of the 
match values εi − ε j , where εi and ε j are independently and identically distributed with a symmetric distribution. Then it 
does not matter whether εi or ε j is revealed to the consumer, since both signals are equally informative about εi − ε j .9

Finally, we return to the optimal decision of the consumer in stage 1. According to (1), the consumer will blind buy at 
stage 1 if and only if u0 ≥ u1 (v1, v2) − c1. Our results are presented in the following proposition.

Proposition 2. Assume that the match value is symmetrical and continuously distributed and Assumption 1 holds. There exists a cutoff 
value �0 > 0, which uniquely solves

c1 =
ε̂h∫

−ε̂h

H(x) f (x + �0)dx +
∞∫

ε̂h

xf (x + �0)dx, (8)

such that the optimal search strategy at stage 1, based on the observation (p1, p2, η1, η2), is to (a) blindly buy product 1 if �1 ≡
(η1 − p1) − (η2 − p2) > �0; (b) blindly buy product 2 if �1 < −�0; and (c) inspect either ε̃1 or ε̃2 in an arbitrary sampling order if 
−�0 ≤ �1 ≤ �0 .

Proposition 2 states that the consumer will blind buy at stage 1 if and only if the difference of the two products’ net 
prior values, |�i |, is very large. The intuition is similar to that of Proposition 1: due to the option of “blind buying”, a 
product will be eliminated immediately if it is too bad compared to its rival product. Sampling only takes place when the 
difference between the products is small.

2.2. Market equilibrium

We here solve firms’ pricing game and focus on pure-strategy equilibria. Let Di (p) denote firm i’s expected demand 
given any price pair p = (p1, p2), for i ∈ {1,2}. Let Si (p, η) denote firm i’s demand given price pair p and realizations of 
the prior values η = (η1, η2). According to Proposition 2, we have that Si (p, η) = 0 if �i = (ηi − pi)− (

η j − p j
)
< −�0, and 

Si (p, η) = 1 if �i > �0.
Now consider the case where −�0 ≤ �i ≤ �0. Consumers will inspect one of the products in stage 1. Generally, firm 

i’s demand Si (p, η) may depend on whether product i is first sampled. Specifically, let q j
i (p, η) denote the probability that 

product i is finally purchased, conditional on the consumer having inspected product j’s match value in stage 1, where i, j
∈ {1, 2}. Using Proposition 1, we can show that both qi

i (p, η) and q j
i (p, η) depend only on the difference of the net prior 

values, �i , and satisfy that

qi
i (p, η) = qi

i (�i) ≡ [
1 − F

(
ε̂h − �i

)] +
ε̂h−�i∫

−ε̂h−�i

F (x + �i)dF (x) (9)

8 We thank an anonymous referee for providing this intuitive explanation.
9 Lemma 1 relies on symmetry of the distribution of ε̃. Generally, allowing for asymmetric distribution of ε̃ significantly complicates the sequential search 

problem and does not permit a tractable solution. To complement our analyses and to highlight the impact of blind buying to the optimal search order, we 
relax the assumption that ε̃ is symmetrically distributed in Section 4. However, for tractability, we assume that ε̃ has a binary distribution (which need 
not be symmetric). In Section 4.2, we resolve the market equilibrium and show that under asymmetric ε̃, consumers may first sample the product with a 
lower net prior value. This is in sharp contrast to the Pandora’s rule of Weitzman (1979).
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q j
i (p, η) = q j

i (�i) ≡ F
(
�i − ε̂h

) +
�i+ε̂h∫

�i−ε̂h

[1 − F (x − �i)] dF (x), (10)

where �i ∈ [−�0,�0].
Suppose the consumer first sampled product i’s matches value ε̃i in stage 1. The first term of (9), 1 − F

(
ε̂h − �i

)
, is the 

probability that product i is purchased immediately in stage 2 (i.e., if �i + ε̃i ≥ ε̂h). To understand the second term, note that 
when −ε̂h < �i + ε̃i < ε̂h or −ε̂h − �i < ε̃i < ε̂h − �i , the consumer continues to inspect ε̃ j and purchase product i if and 
only if �i + ε̃i ≥ ε̃ j . Therefore, conditional on ε̃i ∈ (−ε̂h − �i, ε̂h − �i

)
, product i is purchased with probability F (ε̃i + �i). 

Hence, the second term of (9) is firm i’s expected demand given that both products’ match values are identified.10

The explanation for (10) is similar. Suppose product j is inspected first. The first term of (10) represents firm i’s demand 
when the consumer blindly buys product i after inspecting ε̃ j and the second is firm i’s expected demand when both 
products are inspected.

The following lemma shows that firm i’s demand does not depend on the consumer’s search order, so that the demand 
function Si (p, η) is well-defined.

Lemma 2. If the match value is symmetrically distributed, then qi
i (�i) = q j

i (�i) for any �i ∈ [−�0,�0].

The above lemma states that in the case of symmetric match value, each firm receives the same demand regardless of 
whether its product was first sampled. This differs significantly from the typical result that firms obtain higher demand 
when their products are sampled earlier. The reason for our result is that, with the blind buying option, the subsequently 
sampled product may be bought blindly if it turns out that the first sampled product is inadequate and therefore eliminated. 
With a symmetric match value, the probability that a first-sampled product is accepted equals the probability that its rival 
product ends up being eliminated, supposing that the rival product is sampled first instead.

Therefore, given (p, η), firm i’s demand is given by Si (p, η) = Si (�i), which depends only on the difference of net prior 
values �i :

Si (�i) =

⎧⎪⎨
⎪⎩

0 if �i < −�0[
1 − F

(
ε̂h − �i

)] + ∫ ε̂h−�i
−ε̂h−�i

F (x + �i)dF (x) if − �0 ≤ �i ≤ �0

1 if �i > �0

. (11)

We define δi ≡ pi − p j and γi ≡ ηi − η j . We have �i = (ηi − pi) − (
η j − p j

) = γi − δi . It is then obvious that γi is also 
symmetrically and continuously distributed. Let K and k be the distribution and density functions of γi , respectively. Then 
we have Pr {�i ≤ t} = Pr

{
γi − δi ≤ t

} = K (t + δi).
Hence, firm i’s expected demand Di (p) is given by

Di (p) =
∞∫

−∞
Si(x)dK (x + δi)

=
�0∫

−�0

Si(x)dK (x + δi) + 1 − K (�0 + δi) (12)

which depends only on price difference δi = pi − p j .
Assume the price pair p∗ = (p∗

1, p
∗
2) constitutes an equilibrium. Then p∗

i should solve the following problem, for i = 1, 2:

max
pi≥0

pi Di

(
pi, p∗

j

)
(13)

The necessary first-order condition for p∗
i is that, for i = 1, 2:

p∗
i = −Di(p∗)

∂ Di(pi ,p∗
j )

∂ pi
|pi=p∗

i

. (14)

Our result is summarized by the following proposition.

10 Firm i’s demand would be zero if ε̃i ≤ −ε̂h − �i , in which case the consumer will blindly buy product j.
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Proposition 3. Under Assumption 1, the pricing game has a unique symmetric pure strategy equilibrium. The equilibrium market price 
is as follows:

p∗ = − Di (δi) |δi=0

D ′
i (δi) |δi=0

= 1

−2k (0) + 4
[
k (�0) − ∫ �0

0 Si(x)k′(x)dx
] . (15)

When density functions f and g are log-concave, both Si and K are log-concave, which implies demand function Di (p)

is also log-concave in pi . The log concavity of the demand function guarantees that: (i) the necessary (first-order) conditions 
(14) suffice to characterize the solution of the maximization problem (13) and (ii) a solution to the equation system (14)
exists. These conditions give the existence of the pricing equilibrium. Finally, the uniqueness of the pricing equilibrium 
stems from the property that demand function Di (p) only depends on price difference δi = pi − p j and is log-concave in δi .

3. Comparison

This section examines the comparative statistics regarding the effects of blind buying. We first examine how the presence 
of a blind buying option affects the equilibrium price. Then we investigate the relationship between market prices and search 
costs with the blind buying option. We finally examine the effects of blind buying on welfare.

We first review the case without the blind buying option (e.g., Choi et al., 2018; Haan et al., 2018) in a symmetric 
duopoly setting, in which the match value is continuously and symmetrically distributed.

Suppose c1 and c2 are the search costs for the first and second samples, respectively. We remain to assume that each 
consumer’s outside option is −∞ so that she always inspects a product in stage 1. Obviously, without “blind buying”, 
the first-sample search cost c1 has no effect on the market equilibrium. The optimal search strategy depends only on the 
second-sample search cost c2 and is fully characterized by Pandora’s rule.11

Recall that �i = (ηi − pi) − (
η j − p j

)
is the difference between the net prior values for i = 1, 2. Then the consumer will 

first sample product i (or product j) if �i > 0 (or �i < 0). The sampled product is purchased immediately if the match 
value is sufficiently high. Otherwise the consumer continues the search. The optimal search strategy thus is summarized by 
the following lemma.

Lemma 3. Assume blind buying is not allowed and Assumption 1 holds. The consumer always first samples product i, which satisfies 
�i ≥ 0. After observing εi , the consumer (a) continues to inspect ε̃ j if �i + εi < ε̂h and (b) stops searching and purchases product i if 
�i + εi ≥ ε̂h.

Let Sn
i (p, η) denote firm i’s demand given (p, η), for i = 1, 2. Throughout this section, we use superscript n to denote 

the corresponding variables for the case without a blind buying option. Then, according to the optimal search strategy, the 
demand function Sn

i (p, η) depends only on �i and is given as follows:

Sn
i (p, η) = Sn

i (�i) =
{ [

1 − F
(
ε̂h − �i

)] + ∫ ε̂h−�i
−∞ F (x + �i)dF (x) if �i > 0∫ �i+ε̂h

−∞ [1 − F (x − �i)] dF (x) if �i < 0
.

Note that, unlike Si (·), the above demand function Sn
i (·) is discontinuous at �i = 0. Specifically, it is easy to calculate 

that

lim
�i→0+ Sn

i (�i) = 1 − F
(
ε̂h

) + 1

2
F

(
ε̂h

)2

lim
�i→0− Sn

i (�i) = F
(
ε̂h

) − 1

2
F

(
ε̂h

)2
.

The gap between lim�i→0+ Sn
i (�i) and lim�i→0− Sn

i (�i), which equals 
[
1 − F

(
ε̂h

)]2
> 0, characterizes the value of being 

prominent, as widely noted in traditional search models without a blind buying option. It is thus obvious that the advantage 
of prominence decreases with the reservation value ε̂h and increases with the second-sample search cost c2.

Similar to the previous analysis, firm i’s expected demand depends only on price difference δi = pi − p j and is given by

Dn
i (p) = Dn

i (δi) =
∞∫

−∞
Sn

i (x)dK (x + δi).

11 Note that although the search cost in our model is stage-specific instead of seller-specific, the Pandora’s rule is still applicable. The reason is that the 
consumer always inspects a product in stage 1 so that the first-sample search cost c1 does not affect the search behavior. Thus, the optimal search strategy 
remains unchanged when c1 = c2, in which case the search cost becomes seller-specific, as is assumed in the Pandora’s rule.
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Finally, the unique price equilibrium for the case without a blind buying option is as follows:

p∗
n = − Dn

i (δ = 0)

Dn′
i (δ = 0)

= − 1

2k (0) + 4
∫ ∞

0 Sn
i (x)k′(x)dx

. (16)

3.1. The effects of blind buying on equilibrium prices

We first examine how the presence of a blind buying option affects the equilibrium price. Our result is presented in the 
following proposition.

Proposition 4. Under Assumption 1, there exists a cutoff value ĉ1 such that, p∗ < p∗
n if and only if c1 > ĉ1 . That is, allowing blind 

buying decreases (increases) market price if the first-sample search cost is high (low).

Intuitively, in price-directed search models without the blind buying option, search frictions have two effects on price 
competition. First, higher search costs make consumers more hesitate to inspect the next product. Search frictions cause a 
customer-retention effect in the sense that an earlier-visited firm can retain the consumer and induce an immediate purchase 
as long as its net product value exceeds the reservation utility. The customer-retention effect reduces price competition be-
cause search frictions generate monopoly power to the earlier-visited firms. Second, due to the customer-retention effect and 
Weitzman’s optimal search policy, when prices are observable, firms are incentivized to lower product prices in order to be 
earlier visited. This effect increases price competition and is called the early-visit effect.

The introduction of a blind buying option brings two important changes. First, blind buying eliminates the early-visit 
effect. The reason is twofold. On the one hand, consumers are indifferent to the search order, conditional on sampling in 
stage 1. This means that lowering prices cannot increase firms’ probabilities of being sampled earlier. On the other hand, 
firms’ profits are independent of consumers’ search order. Thus, firms have no incentive to lower their prices in order to 
attract first visits.

Second, blind buying creates a new effect on price competition, which we call the blind-buying effect, in the sense that 
an currently visited firm may lose its consumer if its product is too “bad”, i.e., �i = (ηi − pi) − (

η j − p j
)
< −�0 in stage 

1, or �i + εi < −ε̂h in stage 2, in which cases the consumer will blindly buy its rival product. The threat of blind buyings 
(from the rivals) induces firms to increase their product values through lower prices, which increases price competition.

Specifically, the blind-buying effect exists in both stages. According to the consumer’s optimal search behavior, the first-
stage blind-buying effect is characterized by �0, the width of the net prior value difference, which is given by Equation (8):

c1 =
ε̂h∫

−ε̂h

H(x) f (x + �0)dx +
∞∫

ε̂h

xf (x + �0)dx,

where H(x) = −c2 + x + ∫ ∞
x (t − x)dF (t).

The second-stage blind-buying effect is characterized by the lower reservation utility, −ε̂h , which is given by Equation (6):

c2 =
∞∫

ε̂h

(t − ε̂h)dF (t).

A smaller �0 (ε̂h) means a greater threat that the consumer will blindly buy the other (uninspected) product in the first 
stage (in the second stage), and thus leads to a higher first-stage blind-buying effect (second-stage blind-buying effect). Since 
�0 decreases with the first-sample search cost c1, a higher c1 increases the first-stage blind-buying effect. In other words, a 
higher c1 makes the consumer more hesitate to sample the first product and thus increases the probability of blind buying 
in stage 1.

The intuition for Proposition 4 is as follows. The impact of blind buying on equilibrium prices is twofold. On the one 
hand, a firm has no incentive to lower its price in order to attract first visits. On the other hand, the option of blind buying 
(in stage 1) allows consumers to make uninformed purchasing decisions, i.e., purchase without inspecting any products. That 
consumers possess less information about their tastes reduces products’ heterogeneity and increases price competition.12

In other words, the presence of blind buying replaces the early-visit effect with the blind-buying effect. Since both effects 
intensify price competition, the presence of blind buying lowers equilibrium prices if and only if the blind-buying effect
dominates the early-visit effect. Note that an increase in the first-sample search cost c1 has no impact on the early-visit 
effect,13 but increases the first-stage blind-buying effect. Thus, if c1 is sufficiently high, i.e., above some cut-off value ĉ1, the 

12 Our intuition is in line with the results of Armstrong and Zhou (2020), who point out that possessing little information results in poor consumer and 
product match, but leads to fierce price competition.
13 Without “blind buying”, the first-sample search cost c1 has no impact on the market equilibrium since the consumer’s outside option is −∞.
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blind-buying effect dominates the early-visit effect so that the option of blind buying increases price competition, resulting in 
a lower market price.

3.2. The effects of higher search costs

We now consider the effect of an increase in search costs on market prices when blind buying is available.

Proposition 5. When blind buying is allowed, under Assumption 1, the equilibrium price decreases with both c1 and c2 .

As discussed in Section 3.1, the presence of blind buying replaces the early-visit effect with a blind-buying effect. To see 
how market prices change with the search costs, we need to compare the customer-retention effect with the blind-buying 
effect.

From Equation (8), an increase in the first-sample search cost c1 lowers �0, which strengthens the first-stage blind-buying 
effect, but affects neither the second-stage blind-buying effect nor the customer-retention effect, since ε̂h does not change with 
c1. Thus, a higher c1 always increases price competition and lowers market prices. This result is in sharp contrast to the 
ones without blind buying, where the first-sample search cost has no effect on equilibrium outcomes.

For the second-sample search cost c2, similar to the case without blind buying, a higher c2 increases the customer-
retention effect, which weakens price competition due to the monopoly power of the first-sampled firm. On the other hand, 
due to Equation (6), since both �0 and ε̂h decrease with c2, an increase in c2 strengthens both the first-stage and the 
second-stage blind-buying effects, intensifying price competition. Proposition 5 states that the overall blind-buying effect al-
ways dominates the customer-retention effect so that the market price decreases with c2.

In fact, we can show that the second-stage blind-buying effect suffices to dominate the customer-retention effect. Consider 
the extreme case where c1 → 0 so that �0 → ∞. In this case, the first-stage blind-buying effect disappears since blind buying 
never takes place in the first stage. Thus, an increase in c2 strengthens only the second-stage blind-buying effect. Our result 
that the equilibrium price always decreases with c2 implies that the customer-retention effect is actually dominated by the 
second-stage blind-buying effect.

Although the effect of the second-sample search cost on market prices is the same as in existing price-directed search 
models (e.g., Armstrong and Zhou, 2011; Choi et al., 2018; Haan et al., 2018; Shen, 2016), the underlying mechanisms are 
different. In existing price-directed search models, since prices are observable, a price cut can attract more consumers to 
visit a firm, and these first visits are more likely to lead to final sales as search costs increase. As a result, firms’ incentives 
to lower their prices increase with the search costs, resulting in a negative relationship between equilibrium prices and 
search costs. In other words, without blind buying, it is the early-visit effect that intensifies price competition and leads to 
lower market prices. However, with the option of blind buying, the early-visit effect does not exist. What increases price 
competition is the new-created blind-buying effect. With blind buying, firms lower prices not for being sampled earlier, but 
for higher product values so that consumers are less likely to blindly buy from their rivals.

3.3. Welfare comparison

In this subsection, we study the effects of blind buying on industry profit, consumer surplus and total welfare. Note 
that the equilibrium profit for each firm is given by π∗ = 1

2 p∗ (or π∗
n = 1

2 p∗
n) if blind buying is allowed (not allowed). The 

comparison of industry profits follows immediately from Proposition 4.
To compare consumer surplus and total welfare, let EU b(p1, p2) and EUn(p1, p2) denote consumers’ expected utility 

under price vector (p1, p2) for the case with and without blind buying, respectively. Since the consumer’s optimal search 
strategy depends only on the price difference, for any t ∈ {b,n} and p > 0:

EU t (p, p) = EU t (0,0) − p.

Thus, consumer surplus C St and total welfare T W t for the two models, t ∈ {b,n}, are as follows:

C Sb = EU b (
p∗, p∗) = EU b (0,0) − p∗

C Sn = EUn (
p∗

n, p∗
n

) = EUn (0,0) − p∗
n

T W b = EU b (0,0)

T W n = EUn (0,0) .

Our results are summarized in the following proposition.

Proposition 6. When blind buying is allowed, under Assumption 1, (i) industry profit increases if and only if the first-sample search 
cost c1 is below some cutoff value ĉ1; (ii) consumer surplus unambiguously increases when the first-sample search cost c1 is high, and 
can either increase or decrease when c1 is low; (iii) total welfare always increases.
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That the availability of blind buying increases total welfare comes from the fact that EU b (0,0) > EUn (0,0), which is 
intuitive. When products are free, the consumer is always better off with a blind buying option. The benefits are achieved 
when the sampled product has a low realized match value, in which case blindly buying the rival product saves the search 
cost and gives the consumer a higher expected utility.

The effect of blind buying on consumer surplus depends on the first-sample search cost. When c1 is high, blind buying 
lowers market prices and industry profit, thus increasing consumer surplus. When c1 is small, while blind buying increases 
total welfare, firms also enjoy higher expected profits. Thus, whether consumer surplus increases depends on the comparison 
between the benefits of the firms and the welfare increase, which is determined by the shapes of the primitive distributions.

4. The curse of prominence

Here, we demonstrate that, with blind buying, prominence could be harmful to a firm, which is in contrast to the 
conventional wisdom that prominence is always beneficial (Armstrong et al., 2009; Armstrong and Zhou, 2011). To this end, 
we need to assume that the distribution of the match value is asymmetric. To ensure tractability, we consider the case of a 
binary match value. That is, we assume ε̃i ∈ {0, r}, with Pr

(
ε̃i = r

) = α.

4.1. Exogenous prominence

This subsection examines the case of exogenous prominence. Assume that firm 1 is the prominent firm and firm 2 is the 
non-prominent firm. Following Armstrong et al. (2009), we assume that all consumers first visit the prominent firm at no 
cost, and then choose whether to visit the non-prominent firm at cost c2. To provide a justification for such an assumption, 
consider the online-and-offline example that we give in the introduction. If firm 1 opens its offline store in a convenient 
location and firm 2 opens its offline store in an unfavorable location, we can assume that all consumers will first visit the 
firm 1’s offline store.

When blind buying is not allowed, it can be shown that being prominent is beneficial.14 Now we show that prominence 
can be harmful when blind buying is allowed. With observation (p1, p2, η1, η2, ε1), the consumer has three options: 1) buys 
product 1 without further inspection and obtains v1 + ε1,15 2) blindly buys product 2 and obtains v2 + E ε̃2 = v2 + αr, or 
3) inspects product 2.

If v1 + ε1 ≥ v2 + αr, the consumers choose between 1) and 3). The value of inspecting ε̃2 is α (v2 + r − (v1 + ε1)), and 
the consumer chooses to inspect ε̃2 if α (v2 + r − (v1 + ε1)) > c2, which can be rewritten as:

�1 + ε1 < r − c2
α

, (17)

where �1 = v1 − v2.
If v1 + ε1 < v2 + αr, the consumer chooses between 2) and 3). The value of inspecting ε̃2 is (1 − α) (v1 + ε1 − v2) and 

the consumer chooses to inspect ε̃2 if (1 − α) (v1 + ε1 − v2) > c2, which can be rewritten as:

�1 + ε1 >
c2

1 − α
. (18)

To ensure the search takes place, we assume the search cost is not too high.

Assumption 2. c2 < α (1 − α) r.

Under Assumption 2, our analysis above yields the following lemma:

Lemma 4. If Assumption 2 holds, a consumer who has sampled firm 1 will
a) buy product 1 without further inspection if �1 + ε1 ≥ r − c2

α ;
b) blindly buy product 2 if �1 + ε1 < c2

1−α ;
c) continue to inspect product 2 if c2

1−α ≤ �1 + ε1 < r − c2
α ; then buy product 2 if ε2 = r or buy product 1 if ε2 = 0.

The consumer will continue to search only if the current option �1 + ε1 is neither too high nor too low. Otherwise, the 
consumer either buys product 1 immediately or buys product 2 blindly.

Now we calculate each firm i’s expected demand Di (p). Because we assume that all consumers make final purchases, 
we have D1 (p) = 1 − D2 (p). Therefore, it suffices to calculate only one firm’s demand and we focus on D2 (p). We denote 
D2 (p|ε1) as firm 2’s demand conditional on ε1; then we have D2 (p) = αD2 (p|ε1 = r) + (1 − α) D2 (p|ε1 = 0). Recall that 
δ1 = p1 − p2, γ1 = η1 − η2, �1 = γ1 − δ1 and that γ1 has c.d.f. K and p.d.f. k. Then, according to the above lemma, we have

14 The formal proof is available upon request.
15 Recall that the net prior value vi = ηi − pi , for i = 1, 2.
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D2 (p|ε1) = Pr(�1 + ε1 <
c2

1 − α
) + α Pr(

c2

1 − α
≤ �1 + ε1 < r − c2

α
)

= K

(
c2

1 − α
− ε1 + δ1

)
+ α

[
K

(
r − c2

α
− ε1 + δ1

)
− K

(
c2

1 − α
− ε1 + δ1

)]

where the first term on the right-hand side is the probability of product 2 being blindly bought, and the second term is the 
purchasing probability the consumer continues to sample product 2 and observes a good match value.

Firm 2’s expected demand is hence given by

D2 (p) = α

[
(1 − α) K

(
c2

1 − α
− r + δ1

)
+ αK

(
δ1 − c2

α

)]
(19)

+ (1 − α)

[
(1 − α) K

(
c2

1 − α
+ δ1

)
+ αK

(
r − c2

α
+ δ1

)]
,

which only depends on the price difference δ1 and is increasing in δ1.

Lemma 5. Suppose Assumption 2 holds. If δ1 = 0, we have D2 (p) ≥ D1 (p) if and only if α ≤ 1/2.

If δ1 = 0, both firms charge the same prices. Firms 1 and 2 are thus identical except that firm 1 has a prominent position. 
The lemma therefore suggests that being prominent could reduce a firm’s demand, which is contrary to the conventional 
wisdom that a prominent position generates higher demand. There are pros and cons of being a prominent firm in the 
presence of blind buying. On the one hand, the prominent firm has a high chance of being bought immediately if its 
unobservable match value turns out to be of high value. On the other hand, the non-prominent firm has a high chance of 
being bought blindly if the unobservable match value of the prominent firm turns out to be of low value. If the unobservable 
match value is more likely to be of low value (α < 1

2 ), then being non prominent can be beneficial. The intuition is clearest 
in the case when the two firms’ net prior values are the same (v1 = v2): Then, the consumer will buy from firm 1 if ε1 = r
and blindly buy from the firm 2 if ε1 = 0. Obviously, when α < 1/2, the non-prominent firm enjoys a higher demand.

Since prominence can be both an advantage and a disadvantage to generating demand, it also has an ambiguous effect 
on the price and profit of a firm, as the following proposition confirms.

Proposition 7. In equilibrium, the prominent firm charges a lower (higher) price and obtains a lower (higher) profit than the non-
prominent firm if α ≤ 1/2 (α ≥ 1/2).

When α ≤ 1/2, a consumer has a high likelihood of buying blindly from the non-prominent firm, thus the prominent firm 
has strong incentive to lower its price to generate high demand. In contrast, its non-prominent rival has a weak incentive to 
lower its price because it enjoys high demand from consumers’ blind buying. As a result, the prominent firm charges a lower 
price than its non-prominent competitor. When α ≥ 1/2, the prominent firm benefits from the high probability of being 
bought immediately and therefore, has weak incentive to lower its price. However, its non-prominent rival is actively trying 
to attract more demand through price cuts. As a result, the prominent firm charges a higher price than its non-prominent 
competitor.

There are two differences between our results and those of Armstrong et al. (2009). First, we suggest that being promi-
nent can be harmful to a firm’s profit, which contrary to Armstrong et al. (2009). Intuitively, with a blind buying option, 
being non-prominent has the advantage of being bought blindly and thus may increase one’s profit. Second, if prominence is 
beneficial for a firm (α ≥ 1/2) as in Armstrong et al. (2009), the prediction on market prices differs. According to Armstrong 
et al. (2009), the prominent firm charges a lower price than its non-prominent competitors and generates a higher profit due 
to higher demand. By contrast, in our model, the price of the prominent firm is higher than that of its non-prominent com-
petitor, which is in line with the results of Arbatskaya (2007). While Arbatskaya (2007) considers homogeneous products, 
our results show that her results can apply in case of horizontal differentiation.

From the perspective of information disclosure, our result exists some similarities as Lewis and Sappington (1994). In 
their paper, the authors study a monopolist’s decision of whether to disclose information to consumers about their tastes. 
Supplying information to consumers enables a monopolist to segment the market and charge higher price to high-value 
consumers, but it also increases consumers’ information rent. The monopolist may be better by withholding information. In 
our paper here, the prominent firm is essentially forced to reveal its information, and may do worse than the other firm, 
for whom being bought blindly is still an option.

4.2. Endogenous prominence

This subsection examines the case when consumers can endogenously choose the search order based on the information 
they have observed. Prominence is therefore endogenous and depends on firms’ price strategies. This subsection also com-
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plements our basic model by considering an asymmetric distribution of the match value.16 Denote cn as the search cost of 
a consumer’s n − th sample as in our basic model, for n = 1, 2.

In stage 1, a consumer decides among four options: 1) Search product 1 first; 2) Search product 2 first; 3) Blindly buy 
product 1 without any search; 4) Blindly buy product 2 without any search.

Suppose a consumer search product i first, then her subsequent decisions are given by Lemma 4. Accordingly, one can 
easily derive ui (v1, v2), which is the consumer’s expected utility when product i is first sampled. On the other hand, if the 
consumer blindly buys product i, her expected utility is equal to vi + αr. Comparing vi + αr, v j + αr, ui (v1, v2) − c1 and 
u j (v1, v2) − c1, we can solve the optimal search order for the consumer.

Assumption 3. c1 + c2 < α (1 − α) r.

Lemma 6. Suppose Assumption 3 holds.
i) If |�i | ≥ r − c1+αc2

α(1−α)
, then the consumers blindly buy the product with the higher net prior value (i.e., higher vi).

ii) If |�i | < r − c1+αc2
α(1−α)

, then the consumer searches the product with a lower (resp. higher) net prior value if α < 1/2 (resp. 
α ≥ 1/2).

If the difference between the net prior values of the two products is sufficiently large, the consumer will not search and 
blindly buy the product with the higher net prior value. Otherwise, the consumer will search. Interestingly, if the match 
value is more likely to be low (α < 1/2), the consumer first inspects the product with a lower net prior value. Intuitively, by 
inspecting the product with a lower net prior value, the consumer is more likely to end the search by eliminating it, thereby 
saving on search costs. Armstrong and Zhou (2011) suggest different types of being prominent. One of them is lowering the 
product price. By contrast, our lemma above suggests that a firm can gain search prominence17 by increasing its product 
price. However, be aware that prominence is harmful to the firm when α < 1/2. A firm therefore has the incentive to avoid 
being prominent by lowering its price.

Based on the search behavior of consumers, it is easy to derive the demand function of each firm. Once we get the 
demand functions, we can solve the equilibrium prices based on the first order condition of firms’ optimization problem 
and then conduct comparative statistics.

Proposition 8. Suppose c2 is sufficiently small. Then, an increase in c1 or c2 reduces the equilibrium prices.

As c1 increases, firms lower their prices to attract more first-stage blind buying. The impact of an increase in c2 on prices 
is the same as with existing price-directed search models. However, the underlying mechanisms are quite different. As c2
increases, firms lower their prices to avoid being sampled first in our model if α < 1/2, while this is happening to get more 
first sampling in existing price-directed search models.

5. Conclusions

This paper analyzes a price-directed search model in a duopoly market, in which consumers can buy a product without 
inspecting it. We show that Weitzman’s (1979) optimal search policy no longer applies. When the match value has a 
symmetric distribution, both consumers and firms are indifferent to the search order, conditional on searching. While an 
increase in the first-sample search cost has no effect on market prices in existing price-directed search models, it reduces 
equilibrium prices in our model. The effect of second-sample search cost on market prices is the same as in existing price-
directed search models, but the underlying mechanisms are quite different. We also show that, when the match value has 
asymmetric distribution, being prominent can be harmful to a firm.

Welfare analysis further shows that, blind buying increases market prices and industrial profits if and only if the first-
sample search cost is below a threshold value, while it always increases total welfare. Consequently, blind buying increases 
consumer surplus if first-sample search cost is high, but has an ambiguous effect on consumer surplus if the first-sample 
search cost is low.

However, there are many questions that remain unanswered by our results. For instance, our model only considers a 
duopoly market. It is thus natural to extend our model to an oligopoly market with more than two firms. We are aware that 
such an extension poses significant technical challenges. The main difficult is that there is no general and tractable solution 
for consumers’ optimal search policy. Particularly, the search order may be history dependent (Doval, 2018). Nonetheless, 
overcoming these difficulties has a high theoretical value and requires further research. For an asymmetric match value, we 
only consider a binary distribution. Studying a continuous asymmetric distribution is theoretically interesting, but extremely 
challenging.

16 This subsection is a special case of section 2 when and only when α = 1
2 .

17 Here, we define search prominence as being sampled first, not being bought blindly first.
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6. Appendix

Proof of Proposition 1. Proposition 1 follows immediately from (6) and (7) and the fact that H ′(x) = F (x) ∈ (0, 1). �
Proof of Lemma 1. Note that u1 (v1, v2) and u2 (v1, v2) are given as follows.

u1 (v1, v2) =
−ε̂h−�1∫
−∞

v2dF (t) +
ε̂h−�1∫

−ε̂h−�1

[H(�1 + t) + v2]dF (t) +
∞∫

ε̂h−�1

(v1 + t)dF (t)

u2 (v1, v2) =
−ε̂h+�1∫
−∞

v1dF (t) +
ε̂h+�1∫

−ε̂h+�1

[H(−�1 + t) + v1]dF (t) +
∞∫

ε̂h+�1

(v2 + t)dF (t)

where �1 = v1 − v2. The above expression for u1 (v1, v2) can be rewritten as

u1 (v1, v2) = v2 +
ε̂h−�1∫

−ε̂h−�1

H(�1 + t) f (t)dt +
∞∫

ε̂h−�1

(�1 + t) f (t)dt

= v2 +
ε̂h∫

−ε̂h

H(x) f (x − �1)dx +
∞∫

ε̂h

xf (x − �1)dx.

Similarly, u2 (v1, v2) can be rewritten as:

u2 (v1, v2) = v1 +
ε̂h∫

−ε̂h

H(x) f (x + �1)dx +
∞∫

ε̂h

xf (x + �1)dx,

from which we have

u1 (v1, v2) − u2 (v1, v2) = −�1 +
ε̂h∫

−ε̂h

H(x) [ f (x − �1) − f (x + �1)] dx +
∞∫

ε̂h

x [ f (x − �1) − f (x + �1)] dx. (20)

Since H ′ = F and F (x) = 1 − F (−x), it is easy to show that

H(x) − H(−x) = x, for any x. (21)

Using y = −x and applying integration by substitution, we have

0∫
−ε̂h

H(x) [ f (x − �1) − f (x + �1)] dx =
ε̂h∫

0

H(−y) [ f (−y − �1) − f (−y + �1)] dy

=
ε̂h∫

0

[y − H(y)] [ f (y − �1) − f (y + �1)] dy,

where we use equation (21) and the symmetry of f .
Therefore, expression (20) can be rewritten as

u1 (v1, v2) − u2 (v1, v2) = −�1 +
ε̂h∫

0

x [ f (x − �1) − f (x + �1)] dx +
∞∫

ε̂h

x [ f (x − �1) − f (x + �1)] dx

= −�1 +
∞∫

x [ f (x − �1) − f (x + �1)] dx
0
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= −�1 + 1

2

∞∫
−∞

x [ f (x − �1) − f (x + �1)] dx

= −�1 + 1

2

⎡
⎣ ∞∫
−∞

(t + �1) f (t)dt −
∞∫

−∞
(t − �1) f (t)dt

⎤
⎦

= −�1 + 1

2

∞∫
−∞

2�1 f (t)dt = 0,

where the third equation follows from x [ f (x − �1) − f (x + �1)] being symmetric in x and the fourth equation is a result 
of integration by substitution. �
Proof of Proposition 2. The expected benefit of sampling a product in stage 1 is B (v1, v2) = u1 (v1, v2) − max (v1, v2) =
u2 (v1, v2) − max (v1, v2). A blind buying takes place in stage 1 if and only if B (v1, v2) < c1.

From the proof of Lemma 1, we have

u1 (v1, v2) = v2 +
ε̂h∫

−ε̂h

H(x) f (x − �1)dx +
∞∫

ε̂h

xf (x − �1)dx

u2 (v1, v2) = v1 +
ε̂h∫

−ε̂h

H(x) f (x + �1)dx +
∞∫

ε̂h

xf (x + �1)dx,

where �1 = v1 − v2. Thus, the expected benefit B (v1, v2) depends only on the net prior value difference �1 and is given 
as follows

B (v1, v2) = B (�1)

=
{ ∫ ε̂h

−ε̂h
H(x) f (x + �1)dx + ∫ ∞

ε̂h
xf (x + �1)dx if �1 ≥ 0, i.e., v1 ≥ v2∫ ε̂h

−ε̂h
H(x) f (x − �1)dx + ∫ ∞

ε̂h
xf (x − �1)dx if �1 < 0, i.e., v1 < v2

.

The above function B (�1) is symmetric in �1. Without loss of generality, we focus on the case where �1 ≥ 0, so that

B (�1) =
ε̂h∫

−ε̂h

H(x) f (x + �1)dx +
∞∫

ε̂h

xf (x + �1)dx.

Using t = x + �1, we can rewrite the above expression as follows

B (�1) =
ε̂h+�1∫

−ε̂h+�1

H(t − �1) f (t)dt +
∞∫

ε̂h+�1

(t − �1) f (t)dt

Thus,

∂ B (�1)

∂�1
= H

(
ε̂h

)
f
(
ε̂h + �1

) − H
(−ε̂h

)
f
(−ε̂h + �1

) − ε̂h f
(
ε̂h + �1

)

−
ε̂h+�∫

−ε̂h+�

H ′(t − �1) f (t)dt −
∞∫

ε̂h+�1

f (t)dt

= −
ε̂h+�1∫

−ε̂h+�1

F (t − �1) f (t)dt − [
1 − F

(
ε̂h + �1

)]
< 0,

where the second equality follows from the facts that H
(
ε̂h

) = ε̂h , H
(−ε̂h

) = 0 and H ′ = F .
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Note that

lim
�1→∞ B (�1) = 0 (22)

and

lim
�1→0

B (�1) =
ε̂h∫

−ε̂h

H(x) f (x)dx +
∞∫

ε̂h

xf (x)dx. (23)

Both ε̂h and H(x) depend on c2. It is easy to see that 
∫ ε̂h
−ε̂h

H(x) f (x)dx +∫ ∞
ε̂h

xf (x)dx decreases with c2. When c2 approaches 

the upper bound 
∫ ∞

0 tdF (t) (see Assumption 1), ε̂h → 0 so that 
∫ ε̂h
−ε̂h

H(x) f (x)dx + ∫ ∞
ε̂h

xf (x)dx → ∫ ∞
0 tdF (t). According to 

(22), (23) and Assumption 1, we have

lim
�1→∞ B (�1) < c1 <

∞∫
0

tdF (t) < lim
�1→0

B (�1) .

Since ∂ B(�1)
∂�1

< 0 for �1 ≥ 0, there exists a unique �0 > 0 such that B (�0) = c1, which satisfies that B (�1) < c1 if and 
only if �1 > �0 (given that �1 ≥ 0). The symmetry of B(�1) implies that, for all �1 ∈ (−∞,∞), B (�1) < c1 if and only if 
|�1| > �0, which completes our proof. �
Proof of Lemma 2. Recall that for any �i ∈ [−�0,�0]:

qi
i (�i) = [

1 − F
(
ε̂h − �i

)] +
ε̂h−�i∫

−ε̂h−�i

F (x + �i)dF (x)

q j
i (�i) = F

(
�i − ε̂h

) +
�i+ε̂h∫

�i−ε̂h

[1 − F (x − �i)] dF (x)

Applying integration by substitution, we can rewrite qi
i (�i) and q j

i (�i) as follows:

qi
i (�i) = [

1 − F
(
ε̂h − �i

)] +
ε̂h∫

−ε̂h

F (t) f (t − �i)dt

q j
i (�i) = F

(
�i − ε̂h

) +
ε̂h∫

−ε̂h

[1 − F (t)] f (t + �i)dt

Using x = −t and applying integration by substitution, for any �i ∈ [−�0,�0]:

0∫
−ε̂h

F (t) f (t − �i)dt =
ε̂h∫

0

F (−x) f (−x − �i)dx =
ε̂h∫

0

[1 − F (x)] f (x + �i)dx, (24)

and

0∫
−ε̂h

[1 − F (t)] f (t + �i)dt =
ε̂h∫

0

[1 − F (−x)] f (−x + �i)dx =
ε̂h∫

0

F (x) f (x − �i)dx, (25)

where we have repeatedly used F (x) = 1 − F (−x) and the symmetry of f .
Expressions (24) and (25) imply that:

ε̂h∫
F (t) f (t − �i)dt =

ε̂h∫
[1 − F (t)] f (t + �i)dt,
−ε̂h −ε̂h
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which in turn implies that qi
i (�i) − q j

i (�i) = 0, for any �i ∈ [−�0,�0]. �
Proof of Proposition 3. We prove this proposition in three steps: (i) we show that the demand function Di (p) is log-
concave in pi , (ii) we demonstrate the existence of the equilibrium and (iii) we demonstrate the uniqueness of the 
equilibrium.

In step (i), since the log-concavity is preserved by the independent summation of log-concave distributed random vari-
ables, the fact that g is log-concave implies that both k and K are log-concave. We next show that the demand function

Si (�i) =

⎧⎪⎨
⎪⎩

0 if �i < −�0[
1 − F

(
ε̂h − �i

)] + ∫ ε̂h−�i
−ε̂h−�i

F (x + �i)dF (x) if − �0 ≤ �i ≤ �0

1 if �i > �0

is log-concave in �i .
The expression of Si (�i) can be rewritten as:

Si (�i) =
⎧⎨
⎩

0 if �i < −�0∫ ∞
−∞ μ(t + �i) f (t)dt if − �0 ≤ �i ≤ �0

1 if �i > �0

, (26)

where

μ(y) =
⎧⎨
⎩

0 if y < −ε̂h
F (y) if − ε̂h ≤ y ≤ ε̂h

1 if y > ε̂h

Since both μ and f are log-concave, Si (�i) is log-concave in �i . Finally, since both Si and K are log-concave, the 
expected demand Di (p), given by (12), is log-concave in pi .

In step (ii), first note that p1 = p2 = p∗ , which is given by (15), satisfies the first-order condition (14) for each firm, where 
we used the fact that Di (δ = 0) = 1

2 . We prove that both firms charging price p∗ constitute a pricing equilibrium. That is, 
given p j = p∗ , firm i’s profit π (pi) = pi Di (pi, p∗) is maximized when pi = p∗ .

Note that

π ′ (pi) = Di
(

pi, p∗) + pi
∂ Di (pi, p∗)

∂ pi

= ∂ Di (pi, p∗)
∂ pi

θ (pi)

where

θ (pi) ≡
[

pi + Di (pi, p∗)
∂ Di(pi ,p∗)

∂ pi

]

which is increasing in pi due to the log-concavity of Di

(
pi, p∗

j

)
in pi . Moreover, since θ (p∗) = 0, it must be that θ (pi) < 0

when pi < p∗ and θ (pi) > 0 when pi > p∗ . Since ∂ Di
(

pi ,p∗)
∂ pi

< 0, π ′ (pi) > 0 when pi < p∗ and π ′ (pi) < 0 when pi > p∗ . 
Therefore, p∗ indeed maximizes π (pi) = pi Di (pi, p∗).

In step (iii), the uniqueness of the equilibrium follows from the fact that each firm’s demand only depends on the price 
difference. Specifically, let 

(
p̂1, p̂2

)
be any price equilibrium. If p̂1 = p̂2, according to the first-order condition (14), it must 

be that p̂1 = p̂2 = p∗ , which is given by (15).
If p̂1 �= p̂2, without loss of generality, assume δ = p̂1 − p̂2 > 0. The first-order condition gives

p̂1 = − D1 (δ)

D ′
1 (δ)

.

Note that due to the symmetric setting, 
(

p̂2, p̂1
)

also constitutes a price equilibrium, which implies that

p̂2 = − D1 (−δ)

D ′
1 (−δ)

,

which is impossible because p̂1 > p̂2 and − D1(δ)

D ′
1(δ)

< − D1(−δ)

D ′
1(−δ)

due to log-concavity of D1 (δ). This implies that an asymmetric 
equilibrium does not exist. As such, the only symmetric equilibrium is given by (15). That is
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p∗ = − Di (δi) |δi=0

D ′
i (δi) |δi=0

= − 1

2
[∫ �0

−�0
Si(x)k′(x)dx − k (�0)

]
= − 1

2
[∫ 0

−�0
Si(x)k′(x)dx + ∫ �0

0 Si(x)k′(x)dx − k (�0)
]

= − 1

2
[∫ �0

0 Si(−x)k′(−x)dx + ∫ �0
0 Si(x)k′(x)dx − k (�0)

]
= 1

−2k (0) + 4
[
k (�0) − ∫ �0

0 Si(x)k′(x)dx
] ,

where we applied integration by substitution and used the fact that Si(x) + Si(−x) = 1 for all x. �
The following result is useful in proving Propositions 4-6.

Result: Suppose f is a continuously differentiable density function. If f is log-concave, then f is either monotone or 
single-peaked.

Proof. Suppose f is not monotone. Since f is continuously differentiable, there must exist x0 such that f ′(x0) = 0. Due to 
log-concavity, f ′(x)

f (x) is nondecreasing in x, which means

f ′ (x)

f (x)
≤ f ′(x0)

f (x0)
= 0, for any x > x0

and
f ′ (x)

f (x)
≥ f ′(x0)

f (x0)
= 0, for any x < x0.

Since f (x) > 0, this implies that f is single-peaked, with f ′ (x) ≥ 0 for x < x0 , and f ′ (x) ≤ 0 for x > x0 . �
According to the above result, if f is both symmetric and log-concave, f must be single-peaked, with f ′ (x) ≥ 0 for x < 0, 

and f ′ (x) ≤ 0 for x > 0 (because symmetry implies that f ′(0) = 0).

Proof of Proposition 4. Recall that the equilibrium prices for the two models are

p∗ = 1

−2k (0) + 4
[
k (�0) − ∫ �0

0 Si(x)k′(x)dx
]

p∗
n = − 1

2k (0) + 4
∫ ∞

0 Sn
i (x)k′(x)dx

.

We have that

1

p∗ − 1

p∗
n

= −4

�0∫
0

[
Si(x) − Sn

i (x)
]

k′(x)dx − 4

∞∫
�0

[
1 − Sn

i (x)
]

k′(x)dx (27)

Given c2 (and ε̂h), the difference 1
p∗ − 1

p∗
n

depends only on �0 (or c1). From (27), we have

∂
[

1
p∗ − 1

p∗
n

]
∂�0

= 4k′ (�0) [1 − Si(�0)] < 0

Note that for x ∈ [0,�0],

Si (x) = [
1 − F

(
ε̂h − x

)] +
ε̂h−x∫

−ε̂h−x

F (t + x)dF (t)

Sn
i (x) = [

1 − F
(
ε̂h − x

)] +
ε̂h−x∫

F (t + x)dF (t).
−∞
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Thus, Si (x) − Sn
i (x) = − 

∫ −ε̂h−x
−∞ F (t + x)dF (t) < 0.

Since k′(x) ≤ 0 for all x > 0, from (27), we have

lim
�0→0

1

p∗ − 1

p∗
n

= −4

∞∫
0

[
1 − Sn

i (x)
]

k′(x)dx > 0

and

lim
�0→∞

1

p∗ − 1

p∗
n

= −4

∞∫
0

[
Si(x) − Sn

i (x)
]

k′(x)dx < 0

Since ∂�0
∂c1

< 0, there exists ĉ1 such that, 1
p∗ < 1

p∗
n

(or p∗ > p∗
n) if and only if c1 < ĉ1. �

Proof of Proposition 5. The equilibrium price under blind buying is

p∗ = 1

−2k (0) + 4
[
k (�0) − ∫ �0

0 Si(x)k′(x)dx
] . (28)

Consider p∗ as a function of 
(
�0, ε̂h

)
(note that Si(x) depends on ε̂h), in spite of the fact that �0 also depends on ε̂h . We 

first study the effect of c1 on the equilibrium price p∗ . Note that c1 affects p∗ only through �0. We have that

∂
[
k (�0) − ∫ �0

0 Si(x)k′(x)dx
]

∂�0
= k′ (�0) [1 − Si(�0)] ≤ 0,

where we have used the fact that k is single-peaked (since k is symmetric and log-concave), so that k′(x) ≤ 0 for all x > 0. 
According to (28), this implies that ∂ p∗

∂�0
≥ 0. Finally, since �0 decreases with c1 according to the proof of Proposition 2, we 

have that ∂ p∗
∂c1

≤ 0, that is, the market price decreases with the first-stage search cost.
Now we study the effect of c2 on the equilibrium price. Note that c2 affects p∗ through both �0 and ε̂h . We have

∂ p∗

∂c2
= ∂ p∗

∂�0

∂�0

∂c2
+ ∂ p∗

∂ε̂h

∂ε̂h

∂c2
(29)

From the proof of Proposition 2, we have ∂�0
∂c2

< 0. And we have ∂ε̂h
∂c2

< 0 according to the definition of ε̂h .

From (11) we have that ∂ Si(x)
∂ε̂h

= F
(−ε̂h

) [
f
(
ε̂h + x

) − f
(
ε̂h − x

)]
, which is negative for any x > 0 since f is single-

peaked, that is, f ′ (x) ≥ 0 for x < 0, and f ′ (x) ≤ 0 for x > 0. Since k′(x) ≤ 0 for all x > 0, we have that ∂ p∗
∂ε̂h

≥ 0. Finally, since 
∂ p∗
∂�0

≥ 0, from (29) we have that ∂ p∗
∂c2

≤ 0, i.e., the market price decreases with the second-stage search cost. �
Proof of Proposition 6. The comparison of industry profits follows immediately from Proposition 4.

Let EU b(p1, p2) and EUn(p1, p2) denote the consumer’s expected utility under price vector (p1, p2) for cases with and 
without blind buying, respectively. Note that at a symmetric equilibrium, consumers behave exactly the same as if the prices 
are p1 = p2 = 0. Thus, the total welfares for the two models are

T W b = EU b (0,0)

T W n = EUn (0,0) .

We first solve EU b (0,0). When blind buying is available, since the consumer is always indifferent of the search order, 
we assume the sampling order is the same as that when blind buying is not allowed. That is, (i) the consumer first samples 
product i if 0 ≤ ηi − η j ≤ �0, and (ii) a blindly buying takes place when |ηi − η j | > �0, for any i = 1, 2 and j ∈ {1, 2}\{i}.

Using the optimal search strategy, we can solve the consumer’s expected continuation payoff given (η1, η2), as follows:

ub (η1, η2) =

⎧⎪⎪⎨
⎪⎪⎩

η1 if η1 − η2 > �0
−c1 + η2 + E ε̃ max{γ + ε̃,0, H

(
γ + ε̃

)} if 0 ≤ η1 − η2 ≤ �0
−c1 + η1 + E ε̃ max{−γ + ε̃,0, H

(−γ + ε̃
)} if − �0 ≤ η1 − η2 ≤ 0

η2 if η1 − η2 < −�0

, (30)

where γ = η1 − η2, ε̃ is the first-sampled product’s match value, and
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H(x) ≡ −c2 + E ε̃ max(x, ε̃) = −c2 + x +
∞∫

x

(t − x)dF (t)

Therefore, the consumer’s ex-ante expected payoff with blind buying is EU b (0,0) = Eη1,η2 ub (η1, η2).
Similarly, when blind buying is not allowed, the consumer’s expected continuation payoff given (η1, η2) is

un (η1, η2) =
{ −c1 + η2 + E ε̃ max{γ + ε̃, H

(
γ + ε̃

)} if η1 ≥ η2
−c1 + η1 + E ε̃ max{−γ + ε̃, H

(−γ + ε̃
)} if η1 < η2

(31)

Thus, the consumer’s ex-ante expected payoff without blind buying is EUn (0,0) = Eη1,η2 un (η1, η2).
Define �T W (γ ) ≡ ub (η1, η2) − un (η1, η2), which depends only on γ = η1 − η2. From (30) and (31), we have

�T W (γ ) =

⎧⎪⎪⎨
⎪⎪⎩

c1 + γ − E ε̃ max{γ + ε̃, H
(
γ + ε̃

)} if γ > �0
E ε̃ max{γ + ε̃,0, H

(
γ + ε̃

)} − E ε̃ max{γ + ε̃, H
(
γ + ε̃

)} if 0 ≤ γ ≤ �0
E ε̃ max{−γ + ε̃,0, H

(−γ + ε̃
)} − E ε̃ max{−γ + ε̃, H

(−γ + ε̃
)} if − �0 ≤ γ ≤ 0

c1 − γ − E ε̃ max{−γ + ε̃, H
(−γ + ε̃

)} if γ < −�0

.

It is obvious that �T W (γ ) ≥ 0 when −�0 ≤ γ ≤ �0. When γ > �0, we have

�T W (γ ) = c1 + γ − E ε̃ max{γ + ε̃, H
(
γ + ε̃

)}
≥ c1 + γ − E ε̃ max{γ + ε̃,0, H

(
γ + ε̃

)}
> 0,

where the last inequality follows from the definition of �0. Similarly, When γ < −�0,

�T W (γ ) = c1 − γ − E ε̃ max{−γ + ε̃, H
(−γ + ε̃

)}
≥ c1 − γ − E ε̃ max{−γ + ε̃,0, H

(−γ + ε̃
)}

> 0.

Since �T W (γ ) ≥ 0 for any γ , we have that EU b (0,0) > EUn (0,0), which proves that T W b > T W n , i.e., allowing blind 
buying always increases total welfare.

We next investigate the effect of blind buying on consumer surplus. Note that

C Sb = EU b (
p∗, p∗) = EU b (0,0) − p∗

C Sn = EUn (
p∗

n, p∗
n

) = EUn (0,0) − p∗
n

We have

C Sb − C Sn =
[

EU b (0,0) − p∗] − [
EUn (0,0) − p∗

n

]

=
∞∫

−∞
�T W (γ )dK (γ ) − (

p∗ − p∗
n

)
(32)

According to Proposition 4, when c1 is large, we have p∗ < p∗
n , so that C Sb − C Sn > 0. In this case, allowing blind buying 

increases total welfare and decreases industry profit, thus increasing consumer surplus. On the other hand, when c1 is 
small, we have p∗ > p∗

n . In this case, allowing blind buying increases both total welfare and industry profit, and the effect 
on consumer surplus is ambiguous. We use the following example to show that consumer surplus can decrease when c1 is 
small.

Example: Consider c1 → 0 (so that �0 → ∞). Suppose γ ≡ η1 −η2 is symmetrically distributed on interval [−a,a], where 
a > 0. For each m > 0, define ηm

i ≡ mηi for i = 1, 2, and γ m ≡ ηm
1 −ηm

2 . Since γ m = mγ , γ m is symmetrically distributed on 
interval [−ma,ma], with density km(x) = k(x/m)

m and distribution function K m(x) = K (x/m). We reconsider the market game 
by replacing ηm

i with ηi for i = 1, 2, and γ m with γ .
Then, for each m > 0, the equilibrium price with blind buying is given as follows (note that �0 → ∞)

p∗ (m) = 1

4
∫ ma

0 S ′
i(x)km(x)dx

= 1

4
∫ ma

0 S ′
i(x) k(x/m)

m dx

= 1

4
∫ a S ′(mx)k(x)dx

.

0 i
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The equilibrium price without blind buying is given as follows.

p∗
n (m) = 1

2km (0)
[
1 − F

(
ε̂h

)]2 + 4
∫ ma

0 Sn′
i (x)km(x)dx

= 1

2 k(0)
m

[
1 − F

(
ε̂h

)]2 + 4
∫ a

0 Sn′
i (mx)k(x)dx

Finally, the welfare difference is

ma∫
−ma

�T W (x)dK m (x) = 2

ma∫
0

�T W (x)
k(x/m)

m
dx

= 2

a∫
0

�T W (mx)k(x)dx

Note that, when m → 0, the above expressions imply that

lim
m→0

p∗ (m) = 1

2S ′
i(0)

lim
m→0

p∗
n (m) = 0

lim
m→0

ma∫
−ma

�T W (x)dK m (x) = �T W (0)

Thus, when m → 0, the difference in the consumer surplus (32) is:

lim
m→0

C Sb − C Sn = �T W (0) − 1

2S ′
i(0)

=
−ε̂h∫

−∞
F 2(x)dx − 1

4
[

F
(−ε̂h

)
f
(
ε̂h

) + ∫ ε̂h
0 f 2(x)dx

] ,

so that

lim
ε̂h→0

lim
m→0

C Sb − C Sn =
0∫

−∞
F 2(x)dx − 1

2 f (0)
. (33)

Suppose distribution F satisfies 
∫ 0
−∞ F 2(x)dx − 1

2 f (0)
< 0 (this is true when F is a uniform distribution). Then, according 

(33), C Sb − C Sn is negative when c1, m and ε̂h are small. �
Proof of Lemma 5. Because D1 (p) = 1 − D2 (p), it suffices to prove that D2 (p) ≥ 1/2 iff α < 1/2. By setting δ1 = 0, (19)
becomes:

D2 (p) = α

[
(1 − α) K

(
c2

1 − α
− r

)
+ αK

(
− c2

α

)]
(34)

+ (1 − α)

[
(1 − α) K

(
c2

1 − α

)
+ αK

(
r − c2

α

)]

Recall that γ1 = η1 − η2, where η1 and η2 are i.i.d. Therefore, γ is symmetrically distributed and K (0) = 1/2, K (γ ) =
1 − K (−γ ), k (γ ) = k (−γ ). Then, it is easy to derive that D2 (p) |α=1/2 = 1/2.

Define l(c2, α) ≡ αK
(− c2

α

) + (1 − α) K
(

c2
1−α

)
. We prove that l(c2, α) ≥ 1/2 iff α ≤ 1/2, which is useful for the subse-

quent proof. We have:

∂l

∂c2
= k

(
c2

1 − α

)
− k

( c2

α

)
.

Since k (x) is decreasing when x ≥ 0, ∂l
∂c2

≥ 0 iff α ≤ 1/2. Note that l(c2 = 0, α) = 1/2 for any α. Therefore, l(c2, α) ≥ 1/2 iff 
α ≤ 1/2.
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Assume α ≤ 1/2. Due to Assumption 2, we have

c2

1 − α
< max{ c2

α
, r − c2

α
} < r − c2

1 − α

Notice that K is concave in γ for all γ > 0, which implies that

K
( c2

α

)
− K

(
c2

1 − α

)
≥ K

(
r − c2

1 − α

)
− K

(
r − c2

α

)
Using the fact that K (γ ) = 1 − K (−γ ), we can rewrite the above inequality as

K

(
c2

1 − α
− r

)
+ K

(
r − c2

α

)
≥ K

(
− c2

α

)
+ K

(
c2

1 − α

)
(35)

Using (34) and (35), we have

D2 (p) = α2 K
(
− c2

α

)
+ (1 − α)2 K

(
c2

1 − α

)

+ α (1 − α)

[
K

(
c2

1 − α
− r

)
+ K

(
r − c2

α

)]

≥ α2 K
(
− c2

α

)
+ (1 − α)2 K

(
c2

1 − α

)

+ α (1 − α)

[
K

(
− c2

α

)
+ K

(
c2

1 − α

)]

= αK
(
− c2

α

)
+ (1 − α) K

(
c2

1 − α

)
= l(c2,α) ≥ 1/2, since α ≤ 1/2.

Similarly one can prove that D2 (p) ≤ 1/2 when α > 1/2. �
Proof of Proposition 7. Recall that D1 (p) = 1 − D2 (p) and that demands only depend on the price difference δ1 = p1 − p2, 
from which we obtain:

∂ D1 (p)

∂ p1
= ∂ D2 (p)

∂ p2
= −∂ D1 (p)

∂ p2
= −∂ D2 (p)

∂ p1
.

Assume the price pair p∗ = (p∗
1, p

∗
2) constitutes an equilibrium. The first-order condition for p∗

i of firm i’s profit maxi-

mization problem implies that Di (p∗) + p∗
i

∂ Di
(
p∗)

∂ pi
= 0, from which we have:

Di (p∗)
p∗

i

= −∂ Di (p∗)
∂ pi

Because ∂ D1(p)
∂ p1

= ∂ D2(p)
∂ p2

, the above equality implies D1
(
p∗)

p∗
1

= D2
(
p∗)

p∗
2

and, therefore:

D1 (p∗)
D2 (p∗)

= p∗
1

p∗
2

.

The profit is π∗
i = p∗

i D∗
i . Using the fact that D1

(
p∗)

p∗
1

= D2
(
p∗)

p∗
2

, we have

π∗
1

π∗
2

=
(

p∗
1

p∗
2

)2

Therefore, π∗
1 ≤ π∗

2 if and only if p∗
1 ≤ p∗

2.
Assume α ≤ 1/2. We already have that D2 (p) |δ1=0 ≥ 1/2, which implies D1 (p) |�=0 = 1 − D2 (p) |δ1=0 ≤ 1/2. Now we 

prove that, in equilibrium, it must be that p∗
1 ≤ p∗

2. We prove our case by contradiction. Suppose p∗
1 > p∗

2. Then, δ1 =
p∗

1 − p∗
2 > 0. Because D2 (p) is increasing in δ1, we have D2 (p∗) ≥ D2 (p) |δ1=0 ≥ 1/2, and D1 (p∗) = 1 − D2 (p∗) ≤ 1/2. 

However, then p∗
1

p∗
2

= D1
(
p∗)

D2(p∗)
≤ 1, which is a contradiction.

Similarly we can prove that p∗ ≥ p∗ and π∗ ≥ π∗ if α > 1/2. �
1 2 1 2
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Proof of Lemma 6. Consider the case of v1 < v2 (the case of v2 > v1 is similar).
If a consumer decides to blind buy without any search, she will buy product 2 and obtain expected utility v2 + αr.
Now suppose the consumer decides to search in stage 1. We shall prove that u1 (v1, v2) ≤ u2 (v1, v2) such that the 

consumer will optimally choose to search firm 1 (resp. firm 2) first if α ≤ 1/2 (resp. α ≥ 1/2).
Suppose a consumer searches firm 1 first. Then, with probability 1 − α, ε1 = 0, and the consumer will buy product 2 

blindly, and obtain a utility v2 + αr.
With probability α, ε1 = r. Then, we have three cases.
a) v1 − v2 > − c2

α . In this case, the consumer will buy product 1 immediately, and obtain interim utility v1 + r;
b) v1 − v2 < c2

1−α − r. Then the consumer will buy product 2 blindly, and obtain interim utility v2 + αr;
c) If c2

1−α − r < v1 − v2 < − c2
α . Then the consumer will inspect 2, and obtain interim utility α (v2 + r)+ (1 − α) (v1 + r)−

c2.
We can then derive the ex ante utility (net of search cost c1) and purchasing probability in the three cases:
a) v1 − v2 > − c2

α . Then, u1 (v1, v2) = α (v1 + r) + (1 − α) (v2 + αr). The probability of purchasing product 1 is α.
b) v1 − v2 < c2

1−α − r. Then, u1 (v1, v2) = v2 + αr. The probability of buying product 1 is 0.
c) c2

1−α − r < v1 − v2 < − c2
α . Then u1 (v1, v2) = α (α (v2 + r) + (1 − α) (v1 + r) − c2) + (1 − α) (v2 + αr). The probability 

of buying product 1 is α (1 − α).
Similarly, after tedious calculation, we can derive the ex ante utility and purchasing probability when the consumer 

search product 2 first as follows.
a) v1 − v2 < c2

α − r. Then u2 (v1, v2) = v2 + αr. The probability of buying product 1 is 0.
b) v1 − v2 > − c2

1−α . Then u2 (v1, v2) = α (v2 + r) + (1 − α) (v1 + αr). The probability of buying product 1 is 1 − α.
c) c2

α − r < v1 − v2 < − c2
1−α . Then u2 (v1, v2) = α (v2 + r) + (1 − α) (α (v1 + r) + (1 − α) v2 − c2). The probability of 

buying product 1 is (1 − α)α.
Now we prove that u1 (v1, v2) − u2 (v1, v2) ≥ 0 if α ≤ 1/2. In this case, we have the order c2

1−α − r < c2
α − r < − c2

α <

− c2
1−α .
If v1 − v2 < c2

1−α − r, then

u1 (v1, v2) − u2 (v1, v2) = 0.

If c2
1−α − r < v1 − v2 < c2

α − r, then

u1 (v1, v2) − u2 (v1, v2) = α (α (v2 + r) + (1 − α) (v1 + r) − c2) + (1 − α) (v2 + αr) − (v2 + αr)

= (1 − α) (v1 − v2 + r) − c2 > 0.

If c2
α − r < v1 − v2 < − c2

1−α , then

u1 (v1, v2) − u2 (v1, v2) = α (α (v2 + r) + (1 − α) (v1 + r) − c2) + (1 − α) (v2 + αr)

− [α (v2 + r) + (1 − α) (α (v1 + r) + (1 − α) v2 − c2)]

= (1 − 2α) c2 > 0

If − c2
α < v1 − v2 < − c2

1−α , then

u1 (v1, v2) − u2 (v1, v2) = α (v1 + r) + (1 − α) (v2 + αr)−
[α (v2 + r) + (1 − α) (α (v1 + r) + (1 − α) v2 − c2)]

= α2
(

v1 − v2 + 1 − α

α

c2

α

)
> 0

where the last inequality is due to v1 − v2 > − c2
α > − 1−α

α
c2
α for α < 1/2.

If v1 − v2 > − c2
1−α , then

u1 (v1, v2) − u2 (v1, v2) = α (v1 + r) + (1 − α) (v2 + αr) − [α (v2 + r) + (1 − α) (v1 + αr)]

= (1 − 2α) (v2 − v1) > 0.

Thus, we have proved that u1 (v1, v2) ≥ u2 (v1, v2) if α ≤ 1/2.
Similarly, one can prove that u1 (v1, v2) ≤ u2 (v1, v2) if α ≥ 1/2.
Now we go back to stage 1. Suppose α < 1/2, the consumer only needs to decide between searching firm 1 first and 

blindly buying product 2 by comparing u1 (v1, v2) − c1 and v2 + αr. After tedious calculation and using the assumption 
that c1 + c2 ≤ α (1 − α) r, one can derive that u1 (v1, v2) − c1 ≥ v2 + αr iff v2 − v1 ≤ r − c1+αc2

(1−α)α . The case of α ≥ 1/2 is 
similar. �
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Proof of Proposition 8. Consider the case of α < 1/2 (The proof for the case of α > 1/2 is similar). The demand of firm 1 
is

D1 = α Pr
(

0 > v1 − v2 > − c2

α

)
+ α (1 − α)Pr

(
−

(
r − c1 + αc2

(1 − α)α

)
< v1 − v2 < − c2

α

)

+ (1 − α)Pr
(

0 < v1 − v2 <
c2

α

)
+ Pr

(
v1 − v2 > r − c1 + αc2

(1 − α)α

)

+ (1 − α (1 − α)) Pr

(
c2

α
< v1 − v2 < r − c1 + αc2

(1 − α)α

)
Recall that v1 − v2 = γ1 − δ1. Then,

D1 = α
(

K (δ1) − K
(
δ1 − c2

α

))
+ α (1 − α)

(
K

(
δ1 − c2

α

)
− K

(
δ1 + c1 + αc2

(1 − α)α
− r

))

+ (1 − α)
(

K
(
δ1 + c2

α

)
− K (δ1)

)
+

(
1 − K

(
δ1 + r − c1 + αc2

(1 − α)α

))

+ (1 − α (1 − α))

(
K

(
δ1 + r − c1 + αc2

(1 − α)α

)
− K

(
δ1 + c2

α

))

It is easy to derive D1|δ1=0 = 1
2 . The first order condition of firm i’s optimization problem gives

Di + pi
∂ Di

∂ pi
= 0.

In symmetric equilibrium p1 = p2 = p∗ . Then, the first order condition becomes 1
2 + p∗ ∂ Di

(
p∗)

∂ pi
= 0, from which we have

1

2p∗ = −∂ Di (p∗)
∂ pi

= (1 − 2α)
(

k (0) − k
(
− c2

α

))
+ (1 − 2α (1 − α))

(
k
(
− c2

α

)
− k

(
c1 + αc2

(1 − α)α
− r

))
+ k

(
r − c1 + αc2

(1 − α)α

)
.

Thus, we have

∂ 1
2p∗

∂c1
= −2k′

(
r − c1 + αc2

(1 − α)α

)
> 0

and

∂ 1
2p∗

∂c2
= (1 − 2α)

α
k′ (− c2

α

)
+ (1 − 2α (1 − α))

(
− 1

α
k′ (− c2

α

)
− 1

1 − α
k′

(
c1 + αc2

(1 − α)α
− r

))

− 1

1 − α
k′

(
r − c1 + αc2

(1 − α)α

)

= 2α

[
k′

(
c1 + αc2

(1 − α)α
− r

)
− k′ (− c2

α

)]
,

which is positive when c2 → 0. �
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